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Abstract

Novelty detection methods have been frequently applied in medical diagnosis, fault

detection, network security and the discovery of new species. Among them, Support Vector Data

Description (SVDD) has received considerable attention for its comprehensivedescription ability

which covers the target data. Additionally, the Multiple Kernel Learning (MKL) technique has

been extensively applied in machine learning methods; e.g. the SVM classifiers, dimensionality

reduction techniques, etc. In this paper, we focus on the application of the MKL method on

novelty detection (ND) and propose the new method of Multiple Kernel Sphere with Larger

Margin (MKSLM) for novelty detection. In the presented method, the volume of the sphere is

minimized while the margin between the surface of the sphere and the outliers are maximized to

obtain a sphere with minimum size. An algorithm is also developed to solve the optimization

problem. Experimental results over various real data sets have validated the superiority of the

proposed methods
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1. Introduction

Novelty detection (ND) is a method to identify the outliers that are different from the

ordinary data. The outliers are also called abnormal samples or novelty samples. In practice, the

amount of normal data is much more than that of abnormal data, which makes it difficult and

computationally expensive to identify the abnormal data. Therefore, most of the ND methods

focus only on the processing of normal data; e.g., One-Class Support Vector Data Description
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(SVDD)1 and One-Class Support Vector Machine (OCSVM)2. As a result, ND is often named a

One-Class Classification (OCC) problem. The ND approaches are usually applied in currency

validation, medical diagnosis 3, fault detection 45, network security6, new species discovery7,

etc.

ND approaches have been investigated extensively in the past several decades and a number

of techniques have been developed, including neural network-based methods 8 9, density

estimation-based methods 10 and spatial depth-based methods 7. Recently, Wu et al. proposed

SSLM approach 11. This method takes the classification margins of the binary classification

algorithms into account; e.g., w2 for Support Vector Machine (SVM) 12and wρ for

v-SVM13, where ρ and w are the optimal margin (note that it is not the classification margin)

and the normal vector of the hyperplane respectively. Additionally, Cha et al. introduced the

density weight to SVDD for searching an optimal description, in which the weight is estimated

through the relative density of each data point with k-NN approach, so that the optimal

description prioritizes the data points in high-density regions and eventually shifts to these

regions 14. Wang et al. assigned a position-based weight parameter to each data point, which is

computed according to the distance between the corresponding mapped point in the feature space

and the mean of feature space, and used the weight parameters to replace the SVDD’s trade-off

parameter for overcoming the sensitivity to the selection of the trade-off parameter 15. Schölkopf

et al. proposed the OCSVM approach for the One-Class Classification (OCC) problem 2 by

extending the large margin of SVM 12.

Furthermore, researchers have also studied the Multiple Kernel Learning (MKL) technique

in machine learning 161718. For example, MKL is employed and embedded in the training

process of SVM 1920, dimensionality reduction techniques21, domain transfer classifiers22, and

other applications232425. Recently, it has been introduced to the graph regularized NMF 26.

Generally, SVDD may obtain the optimal description only with a kernel and a suitable parameter

for handling the simple nonlinear distribution of data samples. However, it still cannot capture the

multi distribution of the target data. Furthermore, it is unclear whether MKL can be applied to

OCC problems, especially for SVDD. Therefore, we have investigated this issue here and

propose the Multiple Kernel Sphere with Larger Margin (MKSLM) approach for ND.

2. Related work
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The ND methods most related to our approach include SVDD and SSLM. A brief

description of these two methods is provided in this section. Let ]1[ N,, xxX  be the data

matrix with D
i x , and T

Nyy ],,1[ y be the class label vector, with 1iy if ix being a

normal sample; and 1iy otherwise. Without a loss of generality, assume ix ( 11 mi  ) is a

normal sample, and jx ( Nmmjm  2111 ) is an abnormal sample or an outlier.

2.1 SVDD

SVDD models can be divided into two categories 1. One is called the one-class SVDD,

which is constructed only with the normal data. The other is called the two-class SVDD, which is

constructed with both the normal data and the abnormal data. Both of them aim to construct a

small sphere with center c and radius r , so that the volume is as small as possible. The

two-class SVDD can be formulated as:
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where 01 C and 02 C are two parameters used to control the tradeoff between the

sphere volume and the error, and 0i ( Ni 1 ) is the slack variable. By using the Lagrangian

technique, we can obtain the dual problem:
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where T
Nαα ],,[ 1 α is the Lagrangian multiplier vector, and ),( k is a kernel function.

Following some simple algebraic steps, the above dual problem can be rewritten as follows:
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where 1 is a vector of ones,
NNjiNNj

T
i k   )],([)]()([ xxxxK  is the corresponding kernel

matrix associated with the kernel function ),( k , and the sign “  ” is the Hadamard product

operator.

After obtaining the dual variablesα , an unknown data sample x can be classified by using

the following decision function:
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x is a normal sample if 0)( xf . Otherwise, it is an outlier or an abnormal sample.

2.2 SSLM

SSLM is proposed for ND to deal with situations where the training data contain many

normal samples and few outliers; i.e., abnormal samples11. The method is advantageous in that it

takes into consideration the margin between the outliers and the surface of the sphere while

constructing this sphere. The SSLM model is formulated as
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where 0 , 01 v and 02 v are three parameters used to control the tradeoff among the

sphere volume, the margin and the error, 2ρ is the margin between the outliers and the surface

of the sphere, and 0i ( Ni 1 ) is the slack variable. By using the Lagrangian technique, the

dual problem of (4) is given as:
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From the above QP problem, we can obtain the dual variablesα . Then, an unknown data

sample x can be detected by using the following decision function:
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Otherwise, it is an outlier, or an abnormal data sample.

3. Multiple kernel sphere with large margin

In this section, a new approach is proposed for ND, that is Multiple Kernel Sphere with

Larger Margin (MKSLM). In addition, a technique similar to the Simple Multiple Kernel

Learning (SimpleMKL) algorithm is also introduced to solve the optimization problem in

MKSLM19.

3.1 MKSLM Primal Problem

Assume the kernel function ),( k ( k in short) is a linear combination of a set of base

kernels; i.e., 
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KK . To better describe the MKSLM, the theorem below is

proposed.

Theorem 1. Given multiple base kernels and the kernel combination coefficient

T
mdd ],,[ 1 d , the sphere constructed by SSLM in (4) is given as:
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Proof: Given a set of base kernels )()(),( jm
T

imjimk xxxx  and define 
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After substituting (8) with (9) into ccxcxxcx TTk  )(2),()(
2

 , we have
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Clearly, equation (10) shows the fact that the square distance between the data sample x

and the sphere center c , with a single kernel function k , can be expressed as the linear

combination of the M square distances, each of which is computed by the data sample x , the

sphere center mc with the base kernel mk . This implies that, with multiple kernels, M spheres

with centers mc and optimized radius r can be obtained by the SSLM model in (4). Thus, we

can define the margin 2
mρ ( Mm 1 ) between the outliers and the surface of each sphere, and

the total margin can be computed by the linear combination of the margins 2
mρ ; i.e.:
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m
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3.2 MKSLM Dual Problem

The Lagrangian function of MKSLM in (7) can be formulated as follows:
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where T
N ]α,...,α[ 1α and T

N ]β,,β[ 1 β are the vector of Lagrange multipliers. Then, by

setting the partial derivatives of ),,,,( βαc imrL  with respect to the primal variables to zero, the

following formulae are obtained:
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Following simple algebraic steps, we have
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By substituting (17), (18) and (19) to the Lagrangian function of MKSLM in (7), we can

obtain its dual problem:
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Given the kernel combination coefficient d , the above QP problem can be solved. Then, an

unknown data sample x can be detected by using the decision function below:
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if 0)( xf . Otherwise, it is an outlier, or an abnormal data sample. However, if the kernel

combination coefficient d is unknown, the optimization problems in (7) and (22) cannot be

solved. A possible method is to use the alternate optimization algorithms developed in2728. In

the following section, another method is presented which is similar to the SimpleMKL algorithm

19 to solve the optimization problem.

3.3 Algorithm for Solving MKSLM

To obtain the optimized coefficients of base kernels, we consider the following constrained

optimization problem:
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),(min

 dd1

d
d

T

primalJ
(24)



54

where )(dprimalJ is the original problem of MKSLM associated with the optimized

coefficients d ; i.e.:
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By using the Lagrangian technique, we can obtain the dual problem associated with the

optimization problem in (25); i.e.:
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Let )(dJ be the optimal objective value of the original problem in (25). Due to strong

duality, )(dJ is also the objective value of the dual problem in (26); i.e.:
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where α maximizes (26). Then, we can compute the differentiation of )(dJ as follows:

    )()()(
)(

yαKyαKyα
d

  



m

T
m

T

m

diag
d

J . (28)

Using (28), the gradient direction of )(dJ can be obtained. This approach is similar to the

gradient descent method19. To satisfy the equality and the non-negativity constraints in (4), i.e.

1d1T and 0d , we compute the gradient direction of )(dJ using the Reduced Gradient
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Algorithm19. Once the descent direction M
mg  ][g is computed, the kernel combination

coefficient d can be updated iteratively as follows:

)()()()1( tttt gdd 
, (29)

where )(t is the tth learning rate, )(tg is the tth updating direction.

The algorithm for solving the proposed MKSLM is summarized in Algorithm1.

Algorithm 1. MKSLM

1. Set M1d  ;

2. Repeat

Solve the dual problem )(ddualJ of MKSLM using (26);

Compute the gradient )(dJ of )(dJ using (28);

Compute the descent direction )(tg using the Reduced Gradient Algorithm;

Update the kernel combination coefficient d using (29);

Until stopping criterion is met.

3. End.

4. Experiment Results

The performance of the proposed MKSLM is evaluated by comparing it with that of a

number of related methods, including SVM 12, SVM-C29, SVDD 1 and SSLM11. SVM is a

popular classification algorithm while SVM-C is a modified SVM model used to deal with the

problem with imbalanced data sets 29. SVDD and SSLM are two widely used novelty detection

approaches that have been discussed in section 2. Twelve data sets are employed to conduct the

performance evaluation experiments.

4.1 Data Preparation

The nine data sets adopted in the experiments are obtained from the Pattern Recognition

Laboratory of the Delft University of Technology, the Netherlands. The details of data sets are

summarized in Table 1. To prepare a training data set, m1 samples were randomly chosen from 70

percent of the targets, and a small number of outliers were introduced, such that 95 percent of the
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training data are the targets and the remaining 5 percent are outliers; i.e., 950211 .)(  mmm . Before

the experiments, each data set was normalized with respect to each feature to yield unit norm.

Table 1 Property of Data Sets in Experiment

Data sets
The number of

targets
The number of outliers Dimension m1 m2

Biomed 127 67 5 89 5

Iris 50 100 4 35 2

Spectf 95 254 44 67 4

Liver 200 145 6 0 7

Wine 59 119 13 41 2

Thyriod 93 3679 21 65 3

Breast 458 241 9 1 17

Ionosphere 225 126 34 8 8

Sonar 111 97 60 78 4

4.2 Parameters Setting

For MKSLM, we used three kernels, the Gaussian kernel )γ||||exp(),( G
2

jijik xxxx  , the

Laplacian kernel )||||exp(),( Lγjijik xxxx  , and the PolyPlus kernel d
j

T
ijik )1(),( xxxx  . Nine

kernel parameters 2
G 2γ  were used for the Gaussian kernels and another nine kernel

parameters 2γL  were used for the Laplacian kernels, where }4,3,2,1,0,1,2,3,4{  and

 is the mean L2-norm of the training data. For PolyPlus kernel, three kernel parameters; i.e.,

}3,2,1{d , were used. Therefore, a total of 21 base kernels were adopted in the MKSLM

algorithm. For the other algorithms employed for comparison, the Gaussian kernel was adopted

and the best value of its parameter was searched from the grid }16,8,4,2,1,21,41,81,161{2  .
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For MKSLM and SSLM, the best value for the parameter  was searched from the grid

{0.1,0.5,1,5,10,30,50,70,90}, while the parameters 1v and 2v were selected from {0.01,0.001}.

For SVM, the best value for the parameter C was searched from the grid

{0.01,0.05,0.1,0.5,1,5,10,50,100,500}. For SVM-C and SVDD, the parameter 1C was searched

from the same grid as SVM, and 2C was selected from the values with respect to the grid
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4.3 Detection Results

Considering the imbalance of the data sets, the geometric mean metric was employed in

order to measure the performance of the compared algorithms. This metric takes into

consideration the classification results of both positive and negative classes, and it is computed

as:   aag , where a and a are defined as follows:

%100
classifiedtargetstotal#

classifiedcorrectlytargets#
a , %100

classifiedoutlierstotal#

classifiedcorrectlyoutliers#
a .

All algorithms were implemented using Matlab. We performed cross-validation on the

training data for selecting the parameters. The experiment on each data set was repeated ten

times, and the mean and standard deviation of the geometric mean metric were obtained. The

results are shown in Table 2, where the values in bold face indicate the method showing the best

performance. It can be seen that MKSLM and SSLM achieve the best performance. Furthermore,

the performance of SVM was the worst, which validates that it is unsuitable for classifying

imbalanced data sets. Although SVM-C modifies the SVM model in an attempt to solve the

learning problem of imbalanced data sets, it is still inferior to SVDD, SSLM and MKSLM.

Table 2 Outliers Detection Results of 12 Data Sets

Data sets SVM SVM-C SVDD SSLM MKSLM

Biomed 73.17±6.13 79.34±3.80 65.40±1.51 82.24±2.77 78.87±5.69

Iris 89.09±8.52 84.43±9.99 86.16±9.49 93.98±5.94 94.25±2.87

Spectf 44.24±23.61 56.01±12.91 77.11±3.16 73.54±6.07 74.89±4.45

Liver 36.57±5.68 37.50±7.99 62.37±6.14 58.42±5.60 60.45±3.09

Wine 81.36±8.51 81.41±7.01 95.71±4.63 93.42±2.96 96.56±3.23
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Thyriod 68.84±25.03 85.55±4.27 80.01±5.90 87.28±4.30 91.51±3.58

Breast 83.95±4.56 81.24±5.48 95.05±1.44 95.27±1.10 93.80±2.03

Ionosphere 62.91±8.76 65.28±5.07 88.82±2.71 91.79±2.09 90.07±3.63

Sonar 35.44±11.92 50.29±12.14 65.51±2.01 69.01±4.01 70.23±4.07

5. Discussion

Since SSLM explicitly presents the classification margin in geometry, the multiple kernel

technique can be integrated with it and the presented MKSLM in this paper can better capture the

surface of the sphere and detect the outliers. However, the original SVDD does not geometrically

provide the classification margin. Then, the multiple kernel technique cannot be used in SVDD.

While SVM or v-SVM inherently obtain the classification margin when it finds the optimal

hyperplane, the multiple kernel technique can be introduced easily, e.g. SimpleMKL19. Thus, the

classification margin plays important roles in the multiple kernel technique.

6. Conclusion

This paper proposes the new method MKSLM for novelty detection. The method uses

multiple base kernels to maximize the margin between the surface of the sphere and the outliers

during constructing a small sphere. In comparison with SVM, SVM-C, SVDD and SSLM, the

experimental results show that this method can handle imbalanced data and achieve significant

performance. 19In this paper, the multiple kernel technique is currently being extended to other

machine learning methods.
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